
Knowledge-Based Systems 261 (2023) 110180

m
w
t
R
o
g
i
e
u
p
d
l
f
t
r
c

g
q

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Ranking-based contrastive loss for recommendation systems
Hao Tang a,b, Guoshuai Zhao c,∗, Yujiao He c, Yuxia Wu a, Xueming Qian a,d

a School of Information and Communication Engineering, Xi’an Jiaotong University, Xi’an 710049, China
b China Unicom Shaanxi Branch, Xi’an 710075, China
c School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China
d Ministry of Education’s Key Laboratory for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an 710049, China

a r t i c l e i n f o

Article history:
Received 31 October 2021
Received in revised form 7 October 2022
Accepted 4 December 2022
Available online 8 December 2022

Keywords:
Contrastive loss
Recommendation system
Hard samples
Negative samples
Graph convolution network

a b s t r a c t

The recommendation system is fundamental technology of the internet industry intended to solve
the information overload problem in the big data era. Top-k recommendation is an important task
in this field. It generally functions through the comparison of positive pairs and negative pairs based
on Bayesian personalized ranking (BPR) loss. We find that the contrastive loss (CL) function used in
contrastive learning is well-suited for top-k recommendation. However, there are two problems in the
existing loss functions. First, all samples are treated the same, and hard samples are not considered.
Second, all nonpositive samples are considered negative samples, which ignores the fact that they are
unlabelled data containing items that users may like. Moreover, in our experiments, we find that when
items are sorted by their similarities to the user, many negative items (or samples) appear before the
positive items. We regard these negative items as hard samples and those at the top as potentially
positive samples due to their high level of similarities with users. Therefore, we propose a ranking-
based contrastive loss (RCL) function to exploit both hard samples and potentially positive samples.
Experimental results demonstrate the effectiveness, broad applicability, and high training efficiency of
the proposed RCL function. The code and data are available at https://github.com/haotangxjtu/RCL.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Recently, recommendation systems have been widely used in
any areas, such as news, advertising, e-commerce, social net-
orking, and entertainment. They have become a fundamental
echnology and an important research area in the big data era.
ecommendation algorithms have evolved from traditional meth-
ds to deep learning-based methods [1–3], as well as the popular
raph convolution network (GCN) [4–6]. Top-k recommendation
s one of the basic tasks in recommendation systems [7,8]. It gen-
rates a recommendation list by sorting the similarities between
sers and items. The most popular loss function used is Bayesian
ersonalized ranking (BPR) [9] loss, which aims to maximize the
istance between a positive pair and a negative pair. Contrastive
oss (CL) is widely used in contrastive learning [10–12], and we
ind that CL is naturally suitable for recommendation systems due
o the same contrastive process. Cross-entropy loss treats top-k
ecommendation as a classification problem and is used in some
ases [1].
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However, these loss functions have not considered the follow-
ing two problems in the recommendation system: (1) All samples
have the same weights, and there is no distinction between hard
samples and simple samples. However, hard sample mining is of
great importance for improving recommendation systems. (2) All
nonpositive samples are regarded as negative samples, but those
samples with great similarities to users may be potentially posi-
tive samples. Mining these potentially positive samples can solve
the problem of insufficient positive samples and data sparsity,
which will help improve performance.

Both of these problems are related to the processing of nega-
tive samples in recommendation systems. How negative samples
are viewed and handled in recommendation systems is an impor-
tant issue. Generally, items that users interact with are viewed as
positive samples, which are just the ‘‘observed’’ positive samples.
The items that are not interacted with are simply treated as
negative samples, while most of them are ‘‘unlabelled data’’,
which also contain items that the user probably likes. The main
goal of a recommendation system is to retrieve and sort the items
a user interacts with from those that are not interacted with
(negative sample) and recommend the items that the user prob-
ably likes. Therefore, reasonable processing of negative samples
can effectively improve the performance of the recommendation
system, as shown in existing works. Some negative sampling
methods [9,13,14] are combined with loss functions which are
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Fig. 1. After ranking by similarities, many negative items appear before the
positive ones, which are viewed as hard samples, and those at the top are mined
as potentially positive samples. N is the batch size.

haracterized by simplicity, efficiency, effectiveness and wide
pplication scenarios. These methods are more suitable for indus-
rial applications at a large scale and becomes the key direction
or our research.

Experiments show that CL is well suited for top-k recommen-
ation. However, CL also faces the problems discussed above.
ortunately, we find an interesting phenomenon that helps to
ddress these two challenges. After calculating the similarity of
sers and all items within a batch and sorting them in descend-
ng order in each row, many negative items appear before the
bserved positive items, as shown in Fig. 1. In the kth row, ik

is the positive item of uk, but it is not the most similar item.
Actually, in the three datasets we used, Yelp2018, Amazon-Book,
and Pinterest, the average positions of the observed positive items
i1, i2, . . . , iN are approximately 45, 21, and 52, respectively, in
the best baseline method, the light graph convolution network
(LightGCN) [15], of 2048 items. This finding is a fundamental but
rarely directly discussed issue in top-k recommendation. We are
motivated by this and analyse the top-ranked negative items as
follows:

• They are negative items but have a high degree of similarity
with users, so they are probably hard samples. Those items
after the positive samples are easy samples. The distinction
between hard samples and simple samples is seldom dis-
cussed in top-k recommendation, but it is very useful for
improving learning performance.

• The top-ranked items are mined as potentially positive sam-
ples. The recommendation system aims to select the most
preferred items for the users. The top-ranked items are very
similar to the users and they are probably what the user
are interested in. The higher the ranking is, the higher the
probability that the item will be recommended. We mine
the top-ranked items as positive samples in this paper which
are called potentially positive samples.

We successfully mine hard samples and potentially positive
samples through the interesting phenomena, which helps to solve
the problems mentioned above. We propose a ranking-based
contrastive loss (RCL) function to make better use of them. On the
one hand, we design a similarity-based weighting method where
the weights of the hard samples are larger than those of simple
samples because of their greater similarity. Therefore, the hard
samples are given relatively more attention and can be better
optimized. On the other hand, we modify the CL function to use
the potentially positive samples directly, which is equivalent to
using more positive items. This helps to alleviate the problem
of insufficient positive items and the sparsity problem in the
recommendation system.
2

Modifying the loss function is a simple, convenient, and adapt-
able way to implement the above ideas. There is almost no
increase in computation and storage consumption relative to the
whole model. Notably, our RCL is a model-agnostic approach and
can be applied to any model based on user and item embeddings.

We summarize the contributions of this work as follows:

• We propose a novel RCL function by focusing on hard sam-
ples and exploring potentially positive samples. We make CL
adaptable to recommendation systems, and it is also a new
loss function related to negative samples.

• To distinguish the learning difficulty of samples and pay
more attention to hard samples, we devise a weighted con-
trastive loss (WCL) that forces the model to adaptively focus
on different samples.

• We mine potentially positive samples and combine them
with CL functions to form potentially positive sample-based
CL (PCL) functions, which helps to alleviate the problems of
sparsity and lack of positive samples.

• Experiments on real-world datasets demonstrate the supe-
rior performance of RCL over the state-of-the-art methods.
In addition, we further show the applicability and high
training efficiency of our method.

The rest of this paper is organized as follows. In Section 2, a
brief review of related works is presented. To verify the effective-
ness of RCL, we design pLightGCN_RCL, which combines RCL with
the best baseline as our method in Section 3. The experiments and
discussions are provided in Section 4. Conclusions are drawn in
Section 5.

2. Related work

In this section, we briefly review related studies, which in-
clude top-k recommendation, contrastive loss and methods for
handling negative samples.

2.1. Top-k recommendation

The top-k recommendation task is to retrieve the top k items
that are probably liked by the user [7,16]. The history of user–
item interactions can be used to mine the characteristics of users
and items. Collaborative filtering (CF) [17–20] is a basic algorithm
for mining user preferences and is commonly used for recom-
mendations. In recent years, many deep learning techniques and
methods, such as convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), attention mechanisms, and graph
convolution networks (GCNs), have been applied to the recom-
mendation field. For example, attention mechanisms combined
with autoencoders or graphs are widely used in the recommenda-
tion field [21,22]. As a ranking problem, the pairwise loss would
be advantageous [13]. BPR [9] loss learns the embeddings of users
and items by maximizing the distance between positive pairs and
negative pairs, which is the loss function widely used.

The GCN-based CF model has also been widely studied and
has recently achieved good performance [15,23–26]. For exam-
ple, neural graph collaborative filtering (NGCF) [23] exploits the
structure of the user–item graph and its high-order connectivity
by propagating embeddings on it. Linear residual graph convolu-
tional collaborative filtering (LR-GCCF) [24] is a lightweight linear
model proposed to alleviate the oversmoothing problem while
dealing with sparse data in graph convolution. LightGCN [15]
retains only the most important part of the GCN, namely, neigh-
bourhood aggregation, to be more concise and suitable for recom-
mendations and for achieving better performance. Disentangled
graph collaborative filtering (DGCF) [25] focuses on the user’s
intention to adopt different items by modelling a distribution
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ver intents for each user–item interaction. Neural graph per-
onalized ranking (NGPR) [26] is proposed to directly make use
f the user–item interaction information in embedding learning
y incorporating the user–item interaction graph. LR-GCCF and
ightGCN can be seen as the development of NGCF, and we select
ightGCN as our baseline.

.2. Contrastive loss

CL is one of the most useful functions to mine the relation-
hip between samples, and it is designed to narrow the distance
etween positive samples and enlarge the distance between neg-
tive samples [10,27,28]. They are widely used in contrastive
earning and many tasks [29,30].

Triplet loss [31,32] uses exactly one positive sample and one
egative sample at each anchor and attempts to moderate over-
itting by the max-margin operation. There are several derivative
orms of CL based on multiple negative samples, such as N-pair
oss [33], noise-contrastive estimation (InfoNCE) loss [34,35], and
ormalized temperature-scaled cross-entropy loss (NT-Xent) [10,
1]. The N-pair loss [33] considers multiple negative samples for
ach anchor to solve the problem of the slow convergence of
riplet loss. The InfoNCE loss is commonly applied to measure the
istance or similarity by its mutual information in many works
f representation learning [34,35]. NT-Xent [10,11] regards all
he 2N − 2 samples except the target and its positive sample as
egative samples to fully tap the potential relationships between
amples. The slight difference is that the denominator of NT-Xent
ontains only negative samples, while that of the N-pair loss and
nfoNCE loss is the sum of positive and negative samples. They
hare the same idea with a minor difference in form.
Some improvements on CL have been proposed, such as soft

ontrastive learning [36] and debiased contrastive learning [28].
owever, they are proposed for the contrastive learning frame-
ork and are generally applied in the computer vision (CV)
omain. CL needs to adapt to the recommendation system, which
s based on graph-based contrastive learning and has problems
n this domain [37,38]. Self-supervised graph learning (SGL) [39]
s proposed for recommendations, but it focuses on the appli-
ation of the contrastive learning framework rather than the
L function. Moreover, compared with the complex contrastive
earning framework, which requires pretraining and fine-tuning
r multitask learning [39] and requires data augmentation with
n increased computational burden, our improved CL function is
imple, more efficient, and has wide adaptability.

.3. Methods for handling negative samples

Our proposed loss function is related to appropriately viewing
nd handling negative samples. Negative sampling strategies are
ften used in combination with loss functions. BPR [9] is the
ost basic and widely used loss function, which assumes that the
amples obey a uniform distribution and generally samples one
r several negative samples. Neural network-based collaborative
iltering (NNCF) [13] proposes a general hybrid recommendation
ramework with a ‘‘graph-based’’ loss function. This function uses
onpositive samples within the same batch as negative samples,
hich greatly increases the number of negative samples used
nd achieves a significant performance improvement. The neg-
tive sampling method is also adopted by CL functions [10]. The
fficient neural matrix factorization framework (ENMF) [14] pro-
oses a whole-data-based method that employs a nonsampling
trategy. The loss function for optimization is derived through
athematical reasoning.
Models combining negative sampling strategies are also often
roposed. Generative adversarial networks (GANs), reinforcement

3

learning, and more auxiliary information are adopted by models
to mine hard samples to improve performance. To sample true
negative instances of high quality, simplify and robustify nega-
tive sampling (SRNS) [40] designs a two-step sampling scheme
that constantly alternates between score-based memory updates
and variance-based sampling. Auxiliary information helps mine
hard samples. In real-world scenarios, platforms can easily collect
whether the recommended (i.e., exposed) item has been inter-
acted with by a user. Reinforced negative sampling (RNS) [41]
integrates the exposure data into the negative sampler by us-
ing rich information about the negative preferences of users.
Similar to RNS, IRGAN [42] and AdvIR [43] are also GAN-based
structures that are much more complicated for training and ap-
plication. As a result, such methods place higher demands on
model design, model training, and data resources. For example,
with more hyperparameters to fine-tune, a pretraining model
may be needed, which is more likely to suffer mode collapse.
The negative sampling-based loss functions are more intuitive
and simpler; they are also model- and data-independent and
applicable to a wide range of applications.

Compared with the above top-k recommendation methods,
we propose a loss function for recommendations, and, in theory,
RCL can be applied to most of them. Compared with the existing
CL functions, we propose an improved CL function to make it
more adaptable to the recommendation system by combining
the problems in the recommendation system. Compared with the
existing negative sampling methods, we propose a simple and
effective method based on a loss function that gives more atten-
tion to hard samples by weighting and mines potentially positive
items. Our approach is also a positive-unlabelled (PU) learning
method that learns only from positive samples and unlabelled
data. Compared to previous approaches in the field of PU learn-
ing [44], we propose a new approach in combination with the
specific problem of recommendation systems: identifying hard
samples and exploiting potentially positive samples. In particular,
our approach solves the problem by combining the CL function.
RCL focuses on different problems in the recommendation field
compared to our previous work MSCL [45] which solves the
problem of different importance of samples and underutilization
of positive samples.

3. Methodology

The RCL function is applicable to all embedding-based rec-
ommendation methods in theory. To verify and discuss its effec-
tiveness, we implement RCL with the state-of-the-art GCN-based
model LightGCN [15]. The architecture of the proposed frame-
work is shown in Fig. 2. We first construct a user–item graph
based on the historical interaction of users and items. Then, the
LightGCN framework is applied to obtain the embeddings of users
and items. Similarities between users and items from the same
batch are calculated by cosine similarity based on embeddings.
Then, they are sorted in descending order. Thus, the items pre-
ceding the positive item are seen as hard samples, while the
items following the positive item are simple samples. Some top-
ranked items (in light brown) of the row are treated as potentially
positive samples. Then, the RCL function is proposed based on
them. We first briefly describe the basic method and then focus
on the RCL function in detail.

3.1. Basic method

LightGCN [15], the state-of-the-art method for top-k recom-
mendation, is selected as our basic method. We briefly introduce
LightGCN here. A user–item graph is built based on the user’s
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nteraction history. After that, embeddings of users and items are
btained by the following GCN:

(k+1)
u =

∑
i∈Nu

1
√

|Nu|
√

|Ni|
e(k)
i (1)

e(k+1)
i =

∑
u∈Ni

1
√

|Ni|
√

|Nu|
e(k)
u (2)

where u, i denote the user and item, respectively, and e(k)
u , e(k)

i are
embeddings of u, i of the kth layer. Specifically, k = 0 represents
the initialized latent vector. Nu and Ni represent the set of the
neighbours of targets u and i, respectively. The final embeddings
of users and items are calculated as follows:

eu =

K∑
k=0

αke(k)
u (3)

ei =

K∑
k=0

αke
(k)
i (4)

where αk are weight parameters for each layer, and K is the
maximum number of layers. In LightGCN, αk parameters are set to
1/(k+ 1) because the authors find that learning αk does not lead
to improvements. Under the CL function, we succeed in improv-
ing the performance by treating αk as learnable parameters and
they are automatically optimized and learned during the training
process similar to the other parameters, such as the embeddings.
This modified method is named pLightGCN.

Similar to most top-k recommendation models, LightGCN is
trained using the traditional BPR loss as follows

LBPR =

∑
(u,i,j)∈D

− log σ
(
ŷui − ŷuj

)
(5)

where i, j denote positive and negative items, U , I is the set of
users and items and D = {(u, i, j), u ∈ U, i, j ∈ I}; σ (·) is the
sigmoid function; and ŷui is the inner product of the user and item
as same as the model prediction in Formula (13). In this paper BPR
is replaced by RCL.

3.2. Ranking-based Contrastive Loss (RCL)

According to recent works [10,11], we use the NT-Xent loss
as the original contrastive loss function and adapt it to top-k
recommendation:

sim (u, i) = e⊤

u ei/ ∥eu∥ ∥ei∥ (6)

LCL = −
1
N

∑
log

exp
(
sim(u, i+)/τ

)∑
− exp (sim(u, i)/τ)

(7)

(u,i)∈D i∈I l

4

where i+ is the positive sample of target user u, I− is the set of
egative samples, and N denotes the batch size. sim (u, i) is the
osine similarity of the (u, i) pair based on their embeddings. We
ollow the sampling strategy used in contrastive learning [10,11]
n that the other N −1 items except the positive sample i+ in the
same batch are regarded as negative items for user u.

3.2.1. Highlighting the hard samples by Weighted CL (WCL)
Hard sample mining is important for the recommendation

field. In contrast to previous works [27,39], which point out that
the original CL function has the inherent ability to be mined from
the perspective of the gradient, we improve the CL function by
extrinsically and explicitly mining hard samples. All these meth-
ods contribute large and meaningful gradients for hard samples
in optimization and guide node representation learning.

For negative samples, the greater the similarity is, the more
difficult it is to learn; the lower the degree of similarity is, the
easier it is to learn. Thus, the similarities are proportional to the
errors/losses and are used as weights in our method. In this way,
the weights of hard samples are increased, making the model
focus more on the learning of hard samples during training. Since
positive samples generally have a high degree of similarity, their
learning can also be facilitated by similarity weighting. Therefore,
we consistently weighted all samples according to their simi-
larities. We first convert the cosine similarity values to positive
values by using the softplus function. Other functions, such as
softmax and sigmoid, are also effective, but we find that softplus
is better experimentally. The formulas are as follows:

f (u, i) = (softplus(sim (u, i)))γ exp (sim(u, i)/τ) (8)

WCL = −
1
N

∑
(u,i)∈D

log
f
(
u, i+

)∑
i∈I− f (u, i)

(9)

where softplus(x) = log(1 + exp(x)), and γ is a positive hy-
perparameter, which helps adjust the samples’ weights while
training.

The loss function LWCL takes the similarity, sim(u, i), as the
eight to automatically focus on the learning of hard samples.
ere, we give a concrete example to demonstrate the influence
f weighting by similarity. Suppose there is a simple sample and a
ard sample with similarity values of −0.9 and 0.9, respectively.
e take γ = 3 and calculate the weights of the two samples
y (softplus(sim(u, i)))γ , which are 0.04 and 1.91 times those of
he unweighted case when γ = 0. We observe that the weight
f the simple sample decreases, while the weight of the hard
ample increases, and the gap between the two becomes larger:
he weight of the hard sample is approximately 47 times that of
he simple sample. Thus, the hard sample proportion increases
n loss, and hard samples receive more attention and are better
earned in the learning process.
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.2.2. Mining Potentially Positive samples on CL (PCL)
We use the top-ranked samples as potentially positive samples

or the following reasons. (1) Negative samples are unlabelled
ata that contain what users may like. Therefore, we mine the
ossible positive samples from negative samples. (2) The goal of
ecommendations is to retrieve and recommend what the user
ay like from unlabelled data, which meets the basic principle
f recommendation. (3) There must exist (with different prob-
bilities) samples that users may like, i.e., potentially positive
amples. This is the basic assumption of the existence of the
ecommendation system. Otherwise, the recommendation is un-
easonable. (4) Existing methods also support our approach by
ining and exploiting potentially positive samples. For example,
raph data augmentation (GAUG) [46] enables the augmentation
f graph data by dynamically generating positive samples through
generator, thereby increasing the number of connections in the
riginal graph.
Therefore, the top-ranked items are sampled as potentially

ositive items. Instead of actually making the sparse graph denser
y establishing links in graphs as implemented GAUG [46], we use
hese positive samples by improving the loss function and define
P as

P = −
1
N

∑
(u,i)∈D

log

∑
j∈T exp (sim (u, j) /τ)∑
i∈I− exp (sim (u, i) /τ )

(10)

here sim (u, j) is the similarity and T is the set of top j items
ith the greatest similarities. We combine LP with the original
L function as LPCL,

PCL =LCL + LP (11)

= −
1
N

∑
(u,i)∈D

(log
exp

(
sim(u, i+)/τ

)∑
i∈I− exp (sim(u, i)/τ)

+ λ log

∑
j∈T exp (sim (u, j) /τ)∑
i∈I− exp (sim (u, i) /τ)

)

where λ is a hyperparameter to balance the contribution of LP .

.2.3. Combining WCL and PCL as RCL
The previous section specifies how the two improvements are

mplemented, and next, we combine them as the ranking-based
L function:

RCL = −
1
N

∑
(u,i)∈D

(log
f
(
u, i+

)∑
i∈I− f (u, i)

(12)

+ λ log

∑
j∈T f (u, j)∑
i∈I− f (u, i)

)

here f (u, i) is the weight function of WCL and the function after
he plus sign using potentially positive samples in the set T is PCL.

In RCL, potentially positive samples are also part of the hard
samples, which are a remining of the hard samples. That is to
say the top few samples are used both as hard samples and as
potentially positive samples. The reason why some top-ranked
samples are difficult to learn is that they are probably unseen
positive samples rather than negative ones. Moreover, better
ranking quality can be obtained by weighted learning based on
WCL, and only the top of them are reused as potentially positive
samples. We find that WCL or PCL performs better on different
datasets, meaning that one of the factors can play a dominant
role. By balancing WCL and PCL with hyperparameters, RCL is
able to take advantage of both and adapt to different datasets to
achieve better results.
5

Table 1
Complexity analyses.
Component Complexity

LightGCN
Adjacency matrix O(2|E|)

Graph convolution O
(
2|E|Lds |E|

N

)
Loss

BPR O(2|E|ds)
CL O(N|E|ds)
RCL O(N|E|ds)

3.3. Model prediction

The model prediction is defined as the inner product of the
user and item final embeddings:

ŷui = eTuei (13)

ollowing LightGCN, the L2 regularization of parameters is added
n the training loss function, and the top-k items are recom-
ended to users. Overall, we replace the BPR function with RCL
nd keep all other details the same. Our approach with the RCL
unction is named pLightGCN-RCL.

.4. Time complexity analyses

We analyse the complexity of our method following SGL [39],
hich also uses LightGCN as the baseline, mainly focusing on the
omplexity of the loss function. Suppose the edge in the user–
tem interaction graph is |E|. Let L denote the number of GCN
layers and d,N, s denote the embedding size, the batch size, and
the number of training epochs, respectively. The complexity of
CL is O(Ndes), which is mainly the inner product. The complex-
ity of RCL contains three parts: sorting, weighting and adding
potentially positive samples. It is sorted once per epoch. The
complexity of the sorting algorithm is generally O(NlogN), so the
overall complexity of sorting is O(NlogN|E|/Ns) = O((logN)|E|s).
By using the existing calculations of CL, both WCL and PCL add
a very limited number of additions, multiplication, and divisions.
Therefore, their complexity is both O(N|E|s). The overall complex-
ty of RCL is O(Nd|E|s) + O(logN|E|s) + O(N|E|s) + O(N|E|s) =

((Nd+logN+2N)|E|s). Considering that generally N = 2048, d =

4, the latter two are much smaller than the first one, so the final
omplexity is simplified to O(Nd|E|s). That is, it has the same time
complexity as CL. This is consistent with the intuition that we add
only simple operations such as weighting and summation to CL.
All the components and complexities are shown in Table 1.

For comparison, the complexity of BPR is O(2|E|ds). RCL is
O(N/2) times larger than the computational cost of BPR. However,
there is no significant time difference between them in practice
which is shown in the Training Efficiency at last of the next
section.

4. Experiments

4.1. Experimental settings

4.1.1. Datasets
To evaluate the effectiveness of RCL, we conduct experiments

on three benchmark datasets: Yelp2018 [15,23], Amazon-Book
[15,23], and Pinterest [1,47]. These three datasets are collected
for local businesses, books, and content-based image recommen-
dations. For the first two datasets, we use the same datasets and
splits of LightGCN [15] for comparison purposes. For Pinterest, we
follow the same dataset preprocessing strategy of LightGCN. The
statistics of the processed datasets are summarized in Table 2.
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Table 2
Statistics of the datasets.
Dataset Users Items Interactions Density

Yelp2018 31,668 38,048 1,561,406 0.00130
Amazon-Book 52,643 91,599 2,984,108 0.00062
Pinterest 55,187 9916 1,500,809 0.00274

4.1.2. Evaluation metrics
We adopt two widely used evaluation protocols: Recall@K and

DCG@K, where K = 20 following NGCF and LightGCN [15,23].
he Recall measures the number of items that the user likes in
he test data that have been successfully predicted in the top-k
anking list. Normalized discounted cumulative gain (NDCG) is a
easure of ranking quality that considers the position of the item

n the ranking; the higher the position is, the higher the score.

.1.3. Hyperparameter settings
We implemented our proposed method on the official code of

ightGCN.1 Our code and data are available at GitHub.2 Similar to
LightGCN, the embedding size is fixed to 64 for all models. We op-
timize the model with adaptive moment estimation (ADAM) [48]
and use the default batch size of 2048. Grid search is applied
to choose the learning rate and the L2 regularization coefficient
over the ranges {0.0001, 0.001, 0.01} and {1e–5, 1e–4, . . . , 1e–2},
espectively. In most cases, the optimal values are 0.001 and 1e-
. The three main parameters introduced by RCL are λ, γ , and
, and we tune them within the ranges of {0.1, 0.2, . . . , 1.0},
1, 2, 3}, and {0.1, 0.2, 0.5, 1.0}, respectively. The top-2 items in
he sorted N items are used as potentially positive samples. The
arly stopping and validation strategies are the same as in NGCF
nd LightGCN.

.1.4. Compared methods
Wemake comparisons with two types of methods. These com-

ared methods are introduced in the related work in Section 2.
Popular top-k recommendation methods. Matrix factoriza-

ion (MF) is the most fundamental method in the recommenda-
ion field, and most methods can be seen as developments of
F. NGCF [23], LR-GCCF [24], and LightGCN [15] have recently
ecome strong methods based on GCNs. These graph-based meth-
ds have shown superior performance to several methods in the
riginal works.
Loss-function-related methods. NNCF [13] and ENMF [14]

re adopted here because they also propose loss functions focus-
ng on different sample processing strategies.

.2. Performance comparison

.2.1. Overall comparison with different methods
In Table 3, we summarize the performance in the two groups,

s previously introduced. For fair comparisons, the parameters
f the compared methods are adjusted by referring to the range
iven in the original article,hyperparameter discussions, as well
s the parameters used in the provided code. The values in Table 3
re low because full ranking with all item candidates is used
or evaluation following NGCF and LightGCN. Walid et. al. [49]
oint out that most metrics are inconsistent under the sampling
ay which can lead to false discoveries, and sampling should be
voided as much as possible during evaluation. Thus, full ranking
ith all candidate items are used for evaluation and the results
re lower than those of the sampled method [1].

1 https://github.com/gusye1234/LightGCN-PyTorch.
2 https://github.com/haotangxjtu/RCL.
6

The best results are shown in bold, while underlined scores are
the second-best results. Our method consistently obtains optimal
results on the three datasets. Random seeds have little impact
on the results; for example, the standard deviations of the Recall
on the three datasets are ±0.0002, ±0.0001, and ±0.0001. To
measure the overall performance on the different datasets, we
calculated the average performances of the three datasets of the
two metrics [50], which are placed in the last column of the table.

Among all methods, MF is the most basic and performs the
worst. The GCN-based methods, NGCF, LR-GCCF and LightGCN,
explore higher-order connectivity on graphs, consider the effect
of multihop neighbours and thus perform much better and show
the superiority of graph convolution-based methods. LR-GCCF
and LightGCN improve on the shortcomings of NGCF, with perfor-
mance significantly better than that of NGCF, which is consistent
with the original paper. LightGCN is the optimal approach and is
selected as the basis of our method. In particular, LightGCN has
the same number of parameters as MF with only user and item
embeddings.

Compared with the traditional BPR-based methods, the latter
three negative sampling-based loss function methods are also
significantly effective. Overall, both NNCF and ENMF are more
effective than NGCF and LR-GCCF. They are sometimes able to
outperform LightGCN. This shows the potential for improving
negative sampling methods with loss functions. ENMF performs
better than NNCF because it uses more negative samples. We
observe a difference in the performance of NNCF and ENMF on
the first two datasets. NNCF performs well on Amazon-Book, but
poorly on Yelp2018, and with a large margin. The performance
of ENMF is the opposite. This shows that the method based on
negative sampling will show instability on different datasets.

LightGCN, NNCF, and ENMF achieve suboptimal results on
the three datasets, while our proposed method is the best on
all datasets. For RCL, each sample is better weighted for opti-
mization, and potentially positive items are explored for the key
problem of recommendation. RCL combines and balances the two
factors, and, thus, it performs the best on different datasets. The
improvements of our method over the suboptimal results on the
three datasets are shown in the last row. These improvements
are obvious because the suboptimal results are closer to the third
ones. Overall, the average improvement over the three datasets
are 14.76% on Recall and 16.72% on NDCG. Our method performs
much better than the others on the Amazon-Book dataset.

4.2.2. Comparison with different layers of LightGCN
The results of pLightGCN-RCL and LightGCN with different

numbers of layers (1 to 4) on Recall and NDCG metrics are shown
in Fig. 3.

Overall, pLightGCN-RCL outperforms LightGCN by a large mar-
gin in all layers, which shows the effectiveness of RCL. Specifi-
cally, on the 2-layer setting, the Recall improvements on
Yelp2018, Amazon-Book, and Pinterest are 11.89%, 38.44%, and
12.93%, respectively, while the NGCD values are 11.90%, 47.93%,
and 15.62%, respectively.

Compared to LightGCN, pLightGCN-RCL can obtain optimal
results with fewer layers. As the layers increase, we find that
pLightGCN-RCL generally reaches excellent results in the 2-layer
setting and then changes flatly, while the performance of Light-
GCN generally rises, which means it needs more layers. Therefore,
fewer layers (2 layers) and less computation are suitable for
pLightGCN-RCL. Because αk allows better learning of the impor-
tance of each layer, two layers are appropriate. There is no need

for multiple layers of GCN because of oversmoothing issues [15].

https://github.com/gusye1234/LightGCN-PyTorch
https://github.com/haotangxjtu/RCL
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Table 3
Performance comparison.
Method Yelp2018 Amazon-Book Pinterest Average

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

MF 0.0441 0.0353 0.0329 0.0249 0.1061 0.0743 0.0610 0.0448
NGCF 0.0579 0.0477 0.0344 0.0263 0.1257 0.0894 0.0727 0.0545
LR-GCCF 0.0591 0.0485 0.0378 0.0292 0.1277 0.0907 0.0749 0.0561
LightGCN 0.0639 0.0525 0.0411 0.0315 0.1389 0.0983 0.0813 0.0608

NNCF 0.0597 0.0490 0.0430 0.0337 0.1305 0.0960 0.0792 0.0596
ENMF 0.0627 0.0515 0.0362 0.0285 0.1446 0.1043 0.0812 0.0614
pLightGCN-RCL(ours) 0.0696 0.0564 0.0575 0.0476 0.1528 0.1110 0.0933 0.0717
Improvement 8.92% 7.43% 33.72% 41.25% 5.67% 6.42% 14.76% 16.72%
Fig. 3. Performance comparison with different numbers of LightGCN layers.
Fig. 4. Impact of γ on the weight function.
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4.3. Hyperparameter sensitivity analysis

Experimental findings indicate that Pinterest behaves similarly
to Yelp2018 in terms of hyperparameters, so we chose Yelp2018
and Amazon-Book as representative datasets to present the re-
sults. In addition, as shown in the figure, the performance changes
of different datasets vary regularly with the hyperparameters.
Thus, the hyperparameters can be easily adjusted.

4.3.1. Impact of γ on the weight function
Fig. 4 shows that both metrics generally increase as γ in-

reases. The weight is not added when γ = 0, and all datasets gain
he worst performance. This illustrates the effectiveness of the
eighting methods and the correctness of mining hard samples.
7

The results in the figure are consistent with the theoretical anal-
ysis. The larger γ is, the greater the increase in the weight of the
hard samples and the greater the decrease of the simple samples.
Therefore, a better effect will generally be achieved when γ is
dded and has a large value. In addition, 3 can be used as a default
etting for each dataset.

.3.2. Impact of λ of potentially positive samples
As seen from Fig. 5, λ = 0 is the case without potentially

ositive samples. Better results can be obtained by adjusting it.
elp2018 rises and then falls, reaching the best results when λ =

.2 (Pinterest is 0.3). Amazon-Book continues to increase, obtain-
ng the best result at λ = 1. This shows the effectiveness of adding
potentially positive samples. The λ indicates how important the
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Fig. 5. Impact of the coefficient λ of potentially positive samples.
Fig. 6. Impact of the number of potentially positive samples.
Table 4
Ablation study.
Methods BPR CL para WCL PCL Yelp2018 Amazon-Book Pinterest

Recall NDCG Recall NDCG Recall NDCG

LightGCN ✓ 0.0622 0.0504 0.0410 0.0318 0.1353 0.0960
pLightGCN ✓ ✓ 0.0427 0.0335 0.0270 0.0204 0.1100 0.0772
LightGCN-CL ✓ 0.0631 0.0521 0.0452 0.0355 0.1396 0.1003
pLightGCN-CL ✓ ✓ 0.0646 0.0534 0.0516 0.0417 0.1418 0.1024
pLightGCN-WCL ✓ ✓ ✓ 0.0672 0.0554 0.0495 0.0399 0.1476 0.1069
pLightGCN-PCL ✓ ✓ ✓ 0.0655 0.0539 0.0545 0.0447 0.1456 0.1049
pLightGCN-RCL ✓ ✓ ✓ ✓ 0.0696 0.0564 0.0575 0.0476 0.1528 0.1110

For convenience, we name the methods for each row, which are displayed in the first column. BPR, CL, WCL, PCL, and RCL are loss
functions. The para term indicates that we set LightGCN αk parameters as trainable parameters. The ablation analysis is performed
on the optimal number of layers (2, 3, and 2 in the three datasets).
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otentially positive example is in the overall picture, where it
s relatively more important for Amazon-Book. This confirms
he previous finding that Amazon-Book benefits the most from
otentially positive samples. The adjustment of λ to fit different
atasets can deepen the understanding of the data and the reason
or the performance improvement.

.3.3. Impact of the number of potentially positive samples
The experimental results are shown in Fig. 6. Both the Recall

nd NDCG slightly decline with the increase of the number of
otentially positive samples, with Yelp2018 decreasing insignifi-
antly. This decline may be because the similarity of the positive
amples used for the user decreases as the number increases.
herefore, the number of potentially positive samples has little
ffect on the results, and more positive samples do not lead to
erformance gains. We use 2 potentially positive samples in all
xperiments.

.4. Ablation study

.4.1. Effectiveness of CL functions
The first four methods in Table 4 are used to illustrate the

mprovement of LightGCN under the CL function. The first line
s the original LightGCN method, where αk is set to 1/(k + 1).
he comparison of the three methods, LightGCN, LightGCN-CL,
8

nd pLightGCN-CL, shows the effectiveness of αk and CL with
o exception. The performance of pLightGCN drops significantly
ompared with LightGCN. Thus, αk can improve the performance,
ut it is important to use CL at the same time; otherwise, the
erformance will become significantly worse with BPR loss.
It is the unpowerful BPR that results in the model converging

o a poor local optimum. For example, on the Yelp2018 dataset
ith k = 2, we obtain α0, α1, and α2 values under BPR of
.122, 0.605, and 0.2723, respectively, while those under RCL are
.019, 0.075, and 0.906, respectively. Obviously, the second plays
he most important role under RCL, and thus, better results are
chieved. This is consistent with the LightGCN-single variant in
ightGCN [15], which uses only the second layer as the final em-
edding and achieves better results. Even after pretraining some
pochs and then starting to use αk, there is still a significant drop
n performance with our additional experiments. With the help
f the CL function, LightGCN-CL can achieve quicker and better
onvergence. These comparisons clearly show the superiority of
L over BPR.
It should be noted that the number of αk parameters is very

mall, which is equal to the number of layers. These very few
ut critical parameters improve the performance by giving the
eights of the layers explicitly, which can be seen in Section 4.5,
ayer Importance.
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Table 5
Applicability of RCL.
Methods Yelp2018 Amazon-Book Pinterest

Recall NDCG Recall NDCG Recall NDCG

MF-BPR 0.0441 0.0353 0.0329 0.0249 0.1061 0.0743
MF-RCL 0.0622(41.04%)↑ 0.0508(43.91%)↑ 0.0477(44.98%)↑ 0.0355(42.57%)↑ 0.1403(32.23%)↑ 0.0999(34.45%)↑

NGCF-BPR 0.0579 0.0477 0.0344 0.0263 0.1257 0.0894
NGCF-RCL 0.0685(18.31%)↑ 0.0565(18.45%)↑ 0.0537(56.10%)↑ 0.0425(61.60%)↑ 0.1466(16.63%)↑ 0.1054(17.90%)↑

LR-GCCF-BPR 0.0591 0.0485 0.0378 0.0292 0.1277 0.0907
LR-GCCF-RCL 0.0683(15.57%)↑ 0.0559(15.26%)↑ 0.0484(28.04%)↑ 0.0381(30.48%)↑ 0.1477(15.66%)↑ 0.1065(17.42%)↑

LightGCN-BPR 0.0639 0.0525 0.0411 0.0315 0.1389 0.0983
pLightGCN-RCL 0.0696(7.24%)↑ 0.0564(6.42%)↑ 0.0575(39.90%)↑ 0.0476(51.11%)↑ 0.1528(10.01%)↑ 0.1110(12.92%)↑

The performance of LightGCN on Yelp2018 and Amazon-Book is taken from the original paper. The best results are shown in bold. Performance improvements relative
to BPR loss are shown in brackets.
s

4.4.2. Effectiveness of the proposed improvements on CL
The last four rows of Table 4 are used to illustrate the effec-

iveness of RCL improvements.
Effectiveness of WCL. The overall performance of pLightGCN-

CL vs. pLightGCN-WCL and pLightGCN-PCL vs. pLightGCN-RCL
illustrates the effectiveness of this idea.

Effectiveness of PCL. Both pLightGCN-CL vs. pLightGCN-PCL
and pLightGCN-WCL vs. pLightGCN-RCL illustrate the effective-
ness of the potentially positive samples. In addition, Amazon-
Book benefits most from this idea.

Effectiveness of combining WCL and PCL. The comparison
f pLightGCN-RCL vs. pLightGCN-WCL and pLightGCN-RCL vs.
LightGCN-PCL show that when both losses are combined, the
erformance clearly increases, rather than decreasing or saturat-
ng. WCL and PCL solve the problem of recommendation system
rom different perspectives, so both of them can still continue to
mprove the effect when used together. In addition, RCL still has
large improvement on the Pinterest dataset relative to WCL and
CL, showing that the two ideas may have a mutually reinforcing
ffect on some datasets. And with explicit samples mining and
arget constraints, the reasons for improvements are explainable.
his not only facilitates practical applications but also can inspire
ther new methods.
Sensitivity analysis on different datasets. Overall, Amazon-

ook is more sensitive to potentially positive samples because
he two metrics significantly improved. Yelp2018 and Pinterest
re more sensitive to adding weights. This indicates that our two
deas will vary depending on the different datasets, but they are
enerally effective.
In conclusion, the improvements proposed in this paper are

ffective, and the RCL function that combines the two improve-
ents is always more effective and performs best.

.5. Applicability of RCL

We replace BPR with RCL to illustrate the applicability of RCL.
n Table 5, ‘‘*-BPR’’ is the original method with BPR loss, and ‘‘*-
CL’’ is the method with the RCL function. We make the following
bservations:
All methods using RCL gain improvements by a large margin

ompared with those using BPR loss. NGCF, LRGCCF, and LightGCN
ave recently become the best three methods, and RCL makes
hem more competitive.

MF is the most fundamental method based on eu, ei, while the
ther methods are based on the transformation of eu, ei. Theoreti-
ally, RCL is suitable for all embedding-based methods. Therefore,
he success of MF-RCL indicates that RCL can be applied to a wide
ange of methods in this field.

We sort the four methods according to their performance
n ascending order. If we observe the consecutive three rows,
ethod-BPR, method-RCL, and adjacent methods-BPR, we find
9

that method-RCL always performs the best. This means that the
improvements of RCL over BPR on the same method are always
greater than the improvements between the adjacent methods
with the original BPR loss. That is, experiments show that our pro-
posed RCL outperforms the new method. In particular, MF is the
most basic method in the recommendation field, and RCL makes
MF much better than competing methods NGCF and LR-GCCF
with BPR.

In particular, MF is the most basic method in the recommenda-
tion domain, and RCL significantly improves the performance of
the most basic method MF. Overall, MF-RCL outperforms NGCF-
BPR, LR-GCCF-BPR, and LightGCN-BPR on three datasets, with
only one exception on Yelp2018. This shows the powerful ability
of RCL to optimize the latent vectors directly. As the simplest
recommendation method, MF-RCL can be widely used in large-
scale industrial scenarios. It also shows the fundamental role and
importance of the loss function for recommendation, which can
be adapted to many models and significantly improve the results.

In addition, we find that the improvements on the three
datasets are different, which may be because of distinct dataset
characteristics, especially because there is a substantial improve-
ment on the Amazon-Book dataset with RCL.

4.6. Discussion

4.6.1. RCL is suitable for top-k recommendation
BPR is directly optimized for ranking, which usually uses one

or several comparison pairs, while RCL employs thousands. RCL
improves the quality of comparison by our ideas. In particular,
the ranking is optimized by assigning different weights according
to different positions, and the learning and use of top-ranked
samples are also enhanced. Therefore, RCL is more suitable for
ranking tasks than BPR in theory. Experimentally, the NDCG of
RCL has been significantly improved compared with BPR in all
test datasets in Table 5.

NDCG is a ranking-related metric that is more meaningful
for ranking and top-k recommendation tasks than Recall. In Ta-
ble 5, the mean improvements of the four methods of Recall
on Yelp2018, Amazon-Book, and Pinterest are 20.54%, 42.26%,
18.63%, respectively, while those of NDCG are 21.01%, 46.64%,
20.67%, respectively. The boost of NDCG is generally greater than
that of Recall, also indicating that RCL is more suitable for top-k
recommendations.

4.6.2. Layer importance
By introducing the CL function, we successfully learn αk, as

shown in Fig. 7. To the best of our knowledge, this is the first
quantitative representation of the importance of each layer in the
GCN domain.

We conduct a normalization such that
∑K

k=0 αk = 1. αk repre-
ents the embedding weight of the kth layer, and α represents
0
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Fig. 7. Layer Importance. For the first time, αk shows the importance of each layer quantitatively.
Fig. 8. Training Efficiency. The vertical axis is the test performance of each epoch of LightGCN, LightGCN-CL, pLightGCN-CL and RCL.
he original embedding. As the number of layers increases, the
mportance of layers 2 and 3 increases, and the importance of
ayers 0 and 1 decreases significantly. The greater the number
f layers, the less important layers 0 and 1 are. When k = 4,
ayer 2 is the most important, and the weight of layer 4 markedly
ecreases. This is consistent with the oversmoothing problems
aced by multilayer GCNs in which performance gains are no
onger realized. However, we are surprised to find that layers 0
nd 1 are of low importance. This finding can clearly explain why
etter results can be obtained in LightGCN [15] by using only
ayer 2.

This also demonstrates the advantages of GCNs over tradi-
ional methods that GCNs exploit the graph structure to aggregate
nformation of higher-order neighbours. The results show that,
or 3 is the appropriate number of layers in general, and the

econd layer is important. In case of 4 layers, the weights of
he third and fourth layers decrease rapidly, and the fourth layer
lays almost no role. This also verifies the theory of GCNs from a
uantitative perspective: more layers are not always better due
o the over-smoothing problem.

.6.3. Training efficiency
Experiments indicate a significant improvement in both the

raining efficiency and performance of the RCL. Fig. 8 shows
he test performance of each epoch of LightGCN, LightGCN-CL,
LightGCN-CL and LightGCN-RCL in terms of Recall. For compar-
son purposes, the figure shows the performance of LightGCN in
he early stages of the training process. For LightGCN, more than
00 epochs are required to obtain the optimal results, while RCL
chieves the best results at 12 and 22 epochs on the two datasets.
n all compared methods in Fig. 8, it is obvious that RCL has
he fastest convergence and the best results. RCL outperforms
he other methods on the Amazon-Book dataset with just one
teration. Such significant training efficiency gains are found on
ll the methods in Table 5 with the RCL function.
Meanwhile, the training time per epoch is almost unchanged.

pecifically, for the three datasets using BPR, the time consump-
ions per epoch are approximately 13 s, 11 s, and 64 s, and
10
those of RCL are approximately 15 s, 13 s, and 67 s. RCL requires
more inner product computation and sorting than BPR. The batch
sizes are typically 1024 and 2048, which are not large numbers.
Thus, it can be accelerated by deep learning frameworks and
the graphics processing units (GPUs) with almost no increase in
time consumption. RCL can easily utilize negative samples from
the same batch, unlike BPR, which requires a negative sampling
process.

RCL significantly improves the convergence speed with almost
no increase in training time, which greatly improves training
efficiency. We believe this is mainly because N-1 negative sam-
ples are used for learning simultaneously, as demonstrated in the
NNCF [13].

4.7. Compared to MSCL

MSCL [45] is our previous work whose Recall on Yelp2018,
Amazon-Book and Pinterest datasets are 0.0691, 0.0580 and
0.1525 respectively, and NDCG are 0.0568, 0.0466 and 0.1104
respectively. This RCL-based method has similar performance but
slightly outperforms the MSCL-based method overall, as it shows
better results than MSCL in four of the six results. The RCL focuses
on mining the samples from multiple perspectives while the
MSCL addresses the issue of how to make the best use of the
available samples by distinguishing the different importance of
the samples and using a combination of multiple positive sam-
ples. RCL mines hard samples and potentially positive samples
which are important problems for recommendation systems. RCL
is a new approach for sample mining just based on interaction
data, which is more intuitive, simple, and can be applied to
various recommendation methods in theory.

5. Conclusion and future work

In this paper, we propose a simple and effective loss function
RCL for recommendation systems. The interesting phenomena
that many negative items are before the positive ones after rank-
ing by similarities inspire us to mine hard samples and potentially
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ositive samples conveniently. RCL is proposed based on the CL
y weighting and using potentially positive samples. RCL shows
ignificant improvements in performance and training efficiency
nd has good adaptability.
Some directions related to this paper are worth exploring. On

he one hand the mining and utilization of samples in recommen-
ation systems is very important, on the other hand the key to
L is to use samples to make better comparisons, so they can be
ell combined and achieve good results. A good loss function is
ore valuable for the recommendation because the loss function
an directly optimize the model to improve the performance and
an be widely used with many methods. CL can still be improved
nd applied to recommendation systems for different tasks. For
xample, we find that under the constraint of CL, the spatial
istribution of sample embeddings is too compact leading to
ver-smoothing of features, which could be the basis of a future
ork.
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